PROTEOMIC BIOMARKER IDENTIFICATION FOR DIAGNOSIS OF EARLY RELAPSE IN OVARIAN CANCER

Author:

OH JUNG HUN1,NANDI ANIMESH2,GURNANI PREM2,KNOWLES LYNNE3,SCHORGE JOHN3,ROSENBLATT KEVIN P.2,GAO JEAN X.1

Affiliation:

1. Department of Computer Science and Engineering, University of Texas, Arlington, TX 76019, USA

2. Department of Pathology, Division of Translational Pathology, University of Texas at Southwestern Medical Center, Dallas, TX 75390, USA

3. Department of Obstetrics and Gynaecology, Division of Gynaecologic Oncology, University of Texas at Southwestern Medical Center, Dallas, TX 75390, USA

Abstract

Ovarian cancer recurs at the rate of 75% within a few months or several years later after therapy. Early recurrence, though responding better to treatment, is difficult to detect. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry has showed the potential to accurately identify disease biomarkers to help early diagnosis. A major challenge in the interpretation of SELDI-TOF data is the high dimensionality of the feature space. To tackle this problem, we have developed a multi-step data processing method composed of t-test, binning and backward feature selection. A new algorithm, support vector machine-Markov blanket/recursive feature elimination (SVM-MB/RFE) is presented for the backward feature selection. This method is an integration of minimum weight feature elimination by SVM-RFE and information theory based redundant/irrelevant feature removal by Markov Blanket. Subsequently, SVM was used for classification. We conducted the biomarker selection algorithm on 113 serum samples to identify early relapse from ovarian cancer patients after primary therapy. To validate the performance of the proposed algorithm, experiments were carried out in comparison with several other feature selection and classification algorithms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3