Affiliation:
1. FRC Fundamentals of Biotechnology of the RAS, Leninsky Prospect, 33 Building 2, Moscow 119071, Russia
2. Department of Chemistry, M. V. Lomonosov Moscow State University, Kolmogorov Street, 1 Building 3, Moscow 119991, Russia
Abstract
Thermostability of cellulases can be increased through amino acid substitutions and by protein engineering with predictors of protein thermostability. We have carried out a systematic analysis of the performance of 18 predictors for the engineering of cellulases. The predictors were PoPMuSiC, HoTMuSiC, I-Mutant 2.0, I-Mutant Suite, PremPS, Hotspot, Maestroweb, DynaMut, ENCoM ([Formula: see text] and [Formula: see text], mCSM, SDM, DUET, RosettaDesign, Cupsat (thermal and denaturant approaches), ConSurf, and Voronoia. The highest values of accuracy, F-measure, and MCC were obtained for DynaMut, SDM, RosettaDesign, and PremPS. A combination of the predictors provided an improvement in the performance. F-measure and MCC were improved by 14% and 28%, respectively. Accuracy and sensitivity were also improved by 9% and 20%, respectively, compared to the maximal values of single predictors. The reported values of the performance of the predictors and their combination may aid research in the engineering of thermostable cellulases as well as the further development of thermostability predictors.
Funder
Ministry of Science and Higher Education of the Russian Federation
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献