Identification of the PCA29 gene signature as a predictor in prostate cancer

Author:

Lee Jung-Yu1,Lin Si-Yu1,Lin Chun-Yu2,Chuang Yi-Huan1,Huang Sing-Han1,Tseng Yu-Yao1,Wang Hung-Jung3,Yang Jinn-Moon

Affiliation:

1. Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan

2. Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan

3. Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan

Abstract

Prostate cancer (PCa) is the second leading cause of cancer death among men worldwide. About 70% of PCa patients were diagnosed at later stage, and metastasis has been observed. Additionally, the cure rate of PCa closely relies on the early diagnosis with biomarkers. The identification of biomarkers for diagnosis and prognosis is an urgent clinical issue for PCa. Here, we developed a novel scoring strategy, including cluster score (CS) and predicting score (PS), to identify 29 PCa genes (called PCa29) for early diagnostic biomarkers from two datasets in Gene Expression Omnibus. The result indicates that PCa29 can discriminate between normal and tumor tissues and are specific for prostate cancer. To validate PCa29, we found that 97% of PCa29 were consistently significant with these gene expressions in The Cancer Genome Atlas; furthermore, [Formula: see text]70% of PCa29 are consensus to the protein expression in The Human Protein Atlas. Finally, we examined 10 genes in PCa29 on three PCa cell lines by real-time quantitative polymerase chain reaction. The experimental results show that the trend of the differential PCa29 expression is consistent with the analyzed results from our novel scoring method. We believe that our method is useful and PCa29 are potential biomarkers that provide the clues to develop targeting therapy for PCa.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3