A DIFFERENT LOOK AT THE QUALITY OF MODELED THREE-DIMENSIONAL PROTEIN STRUCTURES

Author:

POLEKSIC ALEKSANDAR1,FIENUP MARK1,DANZER JOSEPH F.2,DEBE DEREK A.3

Affiliation:

1. Computer Science Department, University of Northern Iowa, Cedar Falls, IA 50614, USA

2. Eidogen-Sertanty Inc., 9381 Judicial Dr., San Diego, CA 92121, USA

3. Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA

Abstract

Measuring the accuracy of protein three-dimensional structures is one of the most important problems in protein structure prediction. For structure-based drug design, the accuracy of the binding site is far more important than the accuracy of any other region of the protein. We have developed an automated method for assessing the quality of a protein model by focusing on the set of residues in the small molecule binding site. Small molecule binding sites typically involve multiple regions of the protein coming together in space, and their accuracy has been observed to be sensitive to even small alignment errors. In addition, ligand binding sites contain the critical information required for drug design, making their accuracy particularly important. We analyzed the accuracy of the binding sites on two sets of protein models: the predictions submitted by the top-performing CASP7 groups, and the models generated by four widely used homology modeling packages. The results of our CASP7 analysis significantly differ from the previous findings, implying that the binding site measure does not correlate with the traditional model quality measures used in the structure prediction benchmarks. For the modeling programs, the resolution of binding sites is extremely sensitive to the degree of sequence homology between the query and the template, even when the most accurate alignments are used in the homology modeling process.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protein Structure Alignment in Subquadratic Time;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2012

2. OPTIMAL PAIRWISE ALIGNMENT OF FIXED PROTEIN STRUCTURES IN SUBQUADRATIC TIME;Journal of Bioinformatics and Computational Biology;2011-06

3. RECENT ADVANCES ON STRUCTURAL BIOINFORMATICS, CELL MOTION SIMULATION, FUNCTIONAL MODULE IDENTIFICATION, COPY NUMBER VARIATION, AND PROTEASE SUBSTRATE PREDICTION AND SOME CRITICAL COMMENTS ON HMMER2;Journal of Bioinformatics and Computational Biology;2011-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3