CO-EXPRESSION AMONG CONSTITUENTS OF A MOTIF IN THE PROTEIN–PROTEIN INTERACTION NETWORK

Author:

BHARDWAJ NITIN1,LU HUI1

Affiliation:

1. Bioinformatics Program, University of Illinois at Chicago, 820 S. Woods Street, Room 103, Chicago, IL 60607, USA

Abstract

Almost all cellular functions are the results of well-coordinated interactions between various proteins. A more connected hub or motif in the interaction network is expected to be more important, and any perturbation in this motif would be more damaging to the smooth performance of the related functions. Thus, some coherent robustness of these hubs has to be derived. Here, we provide the global evidence that interaction hubs obtain their robustness against uneven protein concentrations through co-expression of the constituents, and that the degree of co-expression correlates strongly with the complexity of the embedded motif. We calculated the gene expression correlations between the proteins embedded in 3-, 4-, 5-, and 6-node interaction motifs of increasing complexities, and compared them to those between proteins from random motifs of similar complexities. We find that as the connectedness of these motifs increases, there is higher co-expression between the constituent proteins. For example, when the expression correlation is 0.7, the kernel density of the correlation increases from 0.152 for 4-node motifs with three edges to 0.403 for 4-node cliques. This implies that the robustness of the interaction system emerges from a proportionate synchronicity among the constituents of the motif via co-expression. We further show that such biological coherence via co-expression of component proteins can be reinforced by integrating conservation data in the analysis. For example, with addition of evolutionary information from other genomes, the ratio of kernel density for interaction and random data in the case of 5- and 6-node cliques in yeast increases from 37.8 to 123 and 98.4 to 1300, respectively, given that the expression correlation is 0.8. Our results show that genes whose products are involved in motifs have transcription and translation properties that minimize the noise in final protein concentrations, compared to random sets of genes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3