ASYMPTOTICS OF CANONICAL AND SATURATED RNA SECONDARY STRUCTURES

Author:

CLOTE PETER1,KRANAKIS EVANGELOS2,KRIZANC DANNY3,SALVY BRUNO4

Affiliation:

1. Department of Biology, Boston College, Chestnut Hill, MA 02467, USA

2. School of Computer Science, Carleton University, K1S 5B6, Ottawa, Ontario, Canada

3. Department of Mathematics, Wesleyan University, Middletown CT 06459, USA

4. Algorithms Project, Inria Paris-Rocquencourt, France

Abstract

It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366 · n-3/2 · 2.618034n. In this paper, we study combinatorial asymptotics for two special subclasses of RNA secondary structures — canonical and saturated structures. Canonical secondary structures are defined to have no lonely (isolated) base pairs. This class of secondary structures was introduced by Bompfünewerer et al., who noted that the run time of Vienna RNA Package is substantially reduced when restricting computations to canonical structures. Here we provide an explanation for the speed-up, by proving that the asymptotic number of canonical RNA secondary structures is 2.1614 · n-3/2 · 1.96798n and that the expected number of base pairs in a canonical secondary structure is 0.31724 · n. The asymptotic number of canonical secondary structures was obtained much earlier by Hofacker, Schuster and Stadler using a different method. Saturated secondary structures have the property that no base pairs can be added without violating the definition of secondary structure (i.e. introducing a pseudoknot or base triple). Here we show that the asymptotic number of saturated structures is 1.07427 · n-3/2 · 2.35467n, the asymptotic expected number of base pairs is 0.337361 · n, and the asymptotic number of saturated stem-loop structures is 0.323954 · 1.69562n, in contrast to the number 2n - 2 of (arbitrary) stem-loop structures as classically computed by Stein and Waterman. Finally, we apply the work of Drmota to show that the density of states for [all resp. canonical resp. saturated] secondary structures is asymptotically Gaussian. We introduce a stochastic greedy method to sample random saturated structures, called quasi-random saturated structures, and show that the expected number of base pairs is 0.340633 · n.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3