PROTEIN FOLD CLASSIFICATION WITH GENETIC ALGORITHMS AND FEATURE SELECTION

Author:

CHEN PENG1,LIU CHUNMEI1,BURGE LEGAND1,MAHMOOD MOHAMMAD2,SOUTHERLAND WILLIAM3,GLOSTER CLAY4

Affiliation:

1. Department of Systems and Computer Science, Howard University, 2300 Sixth Street, NW, Washington, DC 20059, USA

2. Department of Mathematics, Howard University, 2400 Sixth Street, NW, Washington, DC 20059, USA

3. Department of Biochemistry, Howard University, 520 W Street, NW, Washington, DC 20059, USA

4. Department of Electrical and Computer Engineering, Howard University, 2300 Sixth Street, NW, Washington, DC 20059, USA

Abstract

Protein fold classification is a key step to predicting protein tertiary structures. This paper proposes a novel approach based on genetic algorithms and feature selection to classifying protein folds. Our dataset is divided into a training dataset and a test dataset. Each individual for the genetic algorithms represents a selection function of the feature vectors of the training dataset. A support vector machine is applied to each individual to evaluate the fitness value (fold classification rate) of each individual. The aim of the genetic algorithms is to search for the best individual that produces the highest fold classification rate. The best individual is then applied to the feature vectors of the test dataset and a support vector machine is built to classify protein folds based on selected features. Our experimental results on Ding and Dubchak's benchmark dataset of 27-class folds show that our approach achieves an accuracy of 71.28%, which outperforms current state-of-the-art protein fold predictors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3