Dimensionality reduction for protein secondary structure and solvent accesibility prediction

Author:

Aydin Zafer1,Kaynar Oğuz2,Görmez Yasin2

Affiliation:

1. Department of Computer Engineering, Abdullah Gul University, Kayseri 38080, Turkey

2. Department of Management Information Systems, Cumhuriyet University, Sivas 58000, Turkey

Abstract

Secondary structure and solvent accessibility prediction provide valuable information for estimating the three dimensional structure of a protein. As new feature extraction methods are developed the dimensionality of the input feature space increases steadily. Reducing the number of dimensions provides several advantages such as faster model training, faster prediction and noise elimination. In this work, several dimensionality reduction techniques have been employed including various feature selection methods, autoencoders and PCA for protein secondary structure and solvent accessibility prediction. The reduced feature set is used to train a support vector machine at the second stage of a hybrid classifier. Cross-validation experiments on two difficult benchmarks demonstrate that the dimension of the input space can be reduced substantially while maintaining the prediction accuracy. This will enable the incorporation of additional informative features derived for predicting the structural properties of proteins without reducing the accuracy due to overfitting.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3