TOPTMH: TOPOLOGY PREDICTOR FOR TRANSMEMBRANE α-HELICES

Author:

AHMED REZWAN1,RANGWALA HUZEFA2,KARYPIS GEORGE1

Affiliation:

1. Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA

2. Department of Computer Science, George Mason University, Fairfax, Virginia 22030, USA

Abstract

Alpha-helical transmembrane proteins mediate many key biological processes and represent 20%–30% of all genes in many organisms. Due to the difficulties in experimentally determining their high-resolution 3D structure, computational methods to predict the location and orientation of transmembrane helix segments using sequence information are essential. We present TOPTMH, a new transmembrane helix topology prediction method that combines support vector machines, hidden Markov models, and a widely used rule-based scheme. The contribution of this work is the development of a prediction approach that first uses a binary SVM classifier to predict the helix residues and then it employs a pair of HMM models that incorporate the SVM predictions and hydropathy-based features to identify the entire transmembrane helix segments by capturing the structural characteristics of these proteins. TOPTMH outperforms state-of-the-art prediction methods and achieves the best performance on an independent static benchmark.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3