Affiliation:
1. Institute of Soft Matter Mechanics, College of Mechanics snd Materials, Hohai University, Nanjing 211100, P. R. China
2. Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
Abstract
Granular materials as typical soft matter, their transport properties play significant roles in durability and service life in relevant practical engineering structures. Physico-mechanical properties of materials are generally dependent of their microstructures including interfacial and porous characteristics. The formation of such microstructures is directly related to particle components in granular materials. Understanding the interactive mechanism of particle components, microstructures, and transport properties is a problem of great interest in materials research community. The resulting rigorous component-structure-property relations are also valuable for material design and microstructure optimization. This review article describes state-of-the-art progresses on modeling particle components, interfacial and porous configurations and incorporating these internal structural characteristics into modeling transport properties of granular materials. We mainly focus on three issues involving the simulation for geometrical components, the quantitative characterization for interfacial and porous microstructures, and the modeling strategies for diffusive behaviors of granular materials. In the first aspect, in-depth reviews are presented to realize complex morphologies of geometrical particles, to detect the overlap between adjacent nonspherical particles, and to simulate the random packings of nonspherical particles. In the second aspect, we emphasize the development progresses on the interfacial thickness and porosity distribution, the interfacial volume fraction, and the continuum percolation of soft particles representing compliant interfaces and discrete pores. In the final aspect, a literature review is also provided on modeling of transport properties on the forefront of the effective diffusion and anomalous diffusion in multiphase granular materials. Finally, some conclusions and perspectives for future studies are provided.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献