Analysis and design of the system of a total digital Si-gyroscope

Author:

Huang Fuxiang1,Liang Yin1

Affiliation:

1. MEMS Center, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China

Abstract

In order to get a thorough understanding of the total digital silicon micro-gyroscope, a novel system-level model with details of both the sense and circuit is presented in this paper. Unlike the traditional structures of the digital part of the digital gyroscope, a structure with programmable delay units (PDUs) instead of DPLLs gives a brief and robust character of the whole system. And the PDUs coordinating with the FIR filter could lead to a removal of the IF filters of the sigma–delta DAC for feedback, which saves a lot of consumption. Two MASH sigma–delta ADCs are designed to convert the output of the charge–voltage converters to digital signals, which also bring a better stability. The ADCs achieve an SNR of 102.5 dB with a 10 kHz bandwidth. The stabilization of the closed drive mode has also been analyzed including how the noise caused by the quantization of the digital circuit is affecting the stabilization of both the amplitude and frequency of the driving signals. In the end, a final result of simulation of the gyroscope shows the correctness and accuracy of the whole model of the gyroscope.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3