ELECTRONIC CONDUCTION IN ION IMPLANATED AMORPHOUS CARBON THIN FILMS

Author:

KHAN R. U. A.1,SILVA S. R. P.1

Affiliation:

1. School of Electronic Engineering, Information Technology and Mathematics, University of Surrey, Guildford, Surrey GU2 5XH, UK

Abstract

The electronic conduction mechanism occuring in amorphous thin films is quite complicated. In amorphous carbon films it is further exacerbated by the rich diversity of its microstructure as well as the large number of gap states present in the films. One of the main reasons for the tunability of the optical band gaps of these films not being exploited in active devices, has been the inability firstly to reduce the gap states to an acceptable level, and secondly finding suitable dopants that are electrically active at room temperature. The large number of gap states in the films further exacerbates its problems by not allowing suitable barriers (eg. Schottky) to be formed on to the amorphous carbon films. In this paper we hope to first divide the amorphous carbon thin films into two main categories. Namely, diamond-like carbon films which have a high precentage of C-C sp 3 bonding, and polymer-like carbon films that also have a high percentage of sp 3 bonding which is a mixture of C-C and C-H bonds, and have a high percentage of hydrogen as well as large optical band gaps. Recent results based on ion implantation using ions such as N, B, C will be contrasted to in-situ dopant incorporation via a gaseous source., and is shown to be a very powerful technique of modifying the conduction properties. It will be shown that in the diamond-like films the conduction properties are usually controlled via Poole-Frenkel type defect conduction, while for the polymer-like films it is more a space charge based bulk and possibly, barrier controlled process. But, due to the large band gaps of these films it is difficult to distinguish between the bulk effects and the barrier effects.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3