${\rm C}^+_{60}$ IONS IN COLLISIONS WITH CRYSTALLINE SURFACES: KINEMATICS AND DYNAMICS

Author:

LILL TH.1,BUSMANN H.-G.2,LACHER F.3,HERTEL I.V.4

Affiliation:

1. Argonne National Laboratory, Materials Science and Chemistry Division, Argonne, Illinois, USA

2. Fraunhofer-Institut für angewandte Materiaforschung (IfaM), Bremen, Germany

3. Fraunkofer-Institut für angewandte Festkörperphysik (IAF), Freiburg, Germany

4. Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Germany

Abstract

Collisions of [Formula: see text] ions with surfaces of highly oriented pyrolytic graphite (HOPG), diamond (111) and heteroepitaxial fullerite films on mica in the impact energy range between 100 and 1500 eV are studied by mass, energy, and angle resolved time-of-flight mass spectrometry. For the graphite and diamond surfaces, highly inelastic scattering has been observed. The analysis of the velocity dependence of the scattered ions reveals that the normal and tangential component of the ion velocity have different significance for the collision dynamics. The normal component of the velocity appears to determine the amount of energy transferred into vibrational and deformational energy of the projectile and target. The final kinetic energy is independent of the impact energy for impact angles of ≈20° and impact energies between 140 and 450 eV. This observation can be explained by the existence of an upper bound of the final kinetic energy that is defined by the amount of energy stored in the deformed molecule without being deposited or destroyed. The tangential component is partially transformed into rotational energy of the [Formula: see text] in the collision with the surface, as may be explained by a simple rolling ball model. In contrast, scattering from heteroepitaxial fullerite films is nearly elastic for impact energies up to 230 eV and impact angles of about 20°. Additionally, the velocity distributions reveal a low velocity component. Its relative intensity increases with increasing impact energy and remains the only feature in the velocity distribution for impact energies higher than 290 eV. This component is due to sputtering of surface molecules. The angular dependent intensities of the fast ions exhibit a rich structure. This can be attributed to rainbow scattering, as confirmed by classical trajectory and molecular dynamics calculations with different levels of sophistication. These calculations also show that linear collision sequences along the closed packed rows of the fullerite surface may be generated as the result of the [Formula: see text] impact. A detailed study of these collision sequences by molecular dynamics calculations reveals that rainbow effects might be possible when these sequences are defocused due to thermal motion of the surface molecules. The contribution of this process to the measured velocity and angular distributions is discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperthermal collisions of atomic clusters and fullerenes;International Journal of Mass Spectrometry;2004-04

2. Fullerene reactions;Reports on Progress in Physics;2000-06-15

3. Surface-induced dissociation of singly and multiply charged fullerene ions;The Journal of Chemical Physics;2000

4. Surface-induced reactions of Cn+, 50⩽n⩽60;Chemical Physics Letters;2000-01

5. Glancing incidence scattering of hyperthermal He+, Xe+, and C60+ from graphite: Angular and velocity distributions of neutrals;The Journal of Chemical Physics;1999-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3