EXTREME TYPE II SUPERCONDUCTORS: UNIVERSAL PROPERTIES AND TRENDS

Author:

SCHNEIDER T.1,KELLER H.2

Affiliation:

1. IBM Research Division, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland

2. Physik-Institut der Universität Zürich, Schönberggasse 9, CH-8001 Zurich, Switzerland

Abstract

We review and analyze experiment results of the specific heat, the muon–spin rotation (μSR) relaxation rate and the fluctuation contributions to the magnetization and dc conductivity of extreme type II superconductors from the point of view of critical phenomena. Our estimates of critical exponents and amplitudes, the measured scaling behavior, the consistencies with the universal relations between the critical amplitudes and the decrease of the transition temperature (T c ) with decreasing thickness, which corresponds to a dimensional crossover from 3d and 2d xy critical behavior, provide considerable evidence for a three-dimensional xy critical point. The estimated volume of the critical correlation length amplitudes turns out to be comparable to that in super-fluid Helium and is several orders of magnitude smaller than in BCS superconductors. Moreover, motivated by the Uemura plot, which relates the measured T c to the zero temperature μSR relaxation rate, and by the hyperuniversal relation between T c and critical amplitudes of the London penetration depth and phase correlation length, we propose a simple "universal" scaling ansatz, where the plot of the rescaled transition temperature versus rescaled μSR relaxation rate should fall on a single parabola. Our analysis of the μSR data reveals excellent agreement with this scaling ansatz for a large class of cuprate and Chevrel-phase superconductors. The resulting dependence of T c on the zero-temperature "condensate density" is then used to explore universal trends in the pressure (α) and isotope (β) coefficients. In good agreement with experiment we find that α and β fall into common T c -α and T c -β regions, respectively, forming two branches, one for systems with positive and the other for compounds with negative pressure or isotope coefficient. The two branches merge at the maximum T c where the coefficients vanish and the magnitude of the coefficients increases with decreasing T c . The "universal" scaling ansatz also implies that the critical amplitudes of the penetration depth and phase correlation length are related to the zero temperature condensate density. This quantity is also related to the hole concentration. Finally we discuss the temperature dependence of the penetration depth. μSR measurements indicate that for various cuprates the temperature dependence for 0 < T < T c appears to be bounded by the two-fluid model and the dilute charged Bose gas behaviors, respectively. Consistent with the dependence of T c on the zero temperature condensate density, compounds with high T c 's turn out to be closer to two-fluid behavior, while compounds with decreasing T c and in turn with lower condensate density clearly reveal the crossover to the dilute gas limit. These trends combined with T → 0 point uniquely to Bose condensation of interacting and weakly charged pairs as the mechanism that drives the transition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3