Study of Thermal Fatigue of H13 Die Steel with Various Surface Treatments

Author:

Ivanov V. V.1,Ferguson W. G.2,Paine I. R.3

Affiliation:

1. Chemical & Materials Engineering Department, The University of Auckland, Auckland, New Zealand

2. Chemical & Materials Engineering Department, The University of Auckland, Auckland, New Zealand

3. Glucina Metals Limited, Auckland, New Zealand

Abstract

Surfaces of die-casting dies are subjected to very severe conditions of cyclical thermal and mechanical load, and chemical and mechanical wear. Dies mostly fail due to a combination of heat checking, erosion, corrosion and soldering. It is conceivable that appropriate surface treatments and coatings have a favourable influence on the temperature dependant performance of the surface of the die. The objective of this study was to examine various surface treatments and coatings. including shot peening, nitriding, nitro-carburizing, laser hardening and remelting, electro-spark alloying (deposition) and plasma spraying, under thermal fatigue conditions. Thermal cycling tests were conducted by alternate dipping of treated samples in an LM24 melt and in water. Results and interpretation are presented in this paper. The best thermal fatigue resistance was shown for a double surface treatment of laser hardening plus electro-spark deposition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference5 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3