Effect of arc voltage on process stability of bypass-coupling twin-wire indirect arc welding

Author:

Wu Dongting1,Zhang Zhibin2,Du Fuxin3,Zou Yong4

Affiliation:

1. Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education Shandong University, Jinan, Shandong 250061, P. R. China

2. National Innovation Institute of Defense Technology, Academy of Military Science of the Chinese People’s Liberation Army, Beijing 100071, P. R. China

3. School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, P. R. China

4. Shandong Engineering and Technology Research Center for Modern Welding, Shandong University, Jinan, Shandong 250061, P. R. China

Abstract

With the development of bypass-coupling technique, the process window of twin-wire indirect arc welding has been effectively broadened, but the process stability is required to be further improved. In this paper, the influence of arc voltage on the stability of welding process was investigated through process experiments. It was found that the direct arc and indirect arc were alternately ignited. Under the condition of the output voltage at 32 V, the ratio of the indirect arc current to overall welding current was the largest. The weld was well formed with the output voltage above 32 V. Considering both the deposition efficiency and process stability, the desirable output voltage was 32 V.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Shandong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3