Affiliation:
1. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, P. R. China
Abstract
An effective and reliable evolution model can provide strong support for the planning and design of transportation networks. As a network evolution mechanism, link prediction plays an important role in the expansion of transportation networks. Most of the previous algorithms mainly took node degree or common neighbors into account in calculating link probability between two nodes, and the structure characteristics which can enhance global network efficiency are rarely considered. To address these issues, we propose a new evolution mechanism of transportation networks from the aspect of link prediction. Specifically, node degree, distance, path, expected network structure, relevance, population and GDP are comprehensively considered according to the characteristics and requirements of the transportation networks. Numerical experiments are done with China’s high-speed railway network, China’s highway network and China’s inland civil aviation network. We compare receiver operating characteristic curve and network efficiency in different models and explore the degree and hubs of networks generated by the proposed model. The results show that the proposed model has better prediction performance and can effectively optimize the network structure compared with other baseline link prediction methods.
Funder
national natural science foundation of china
Natural Science Foundation of Beijing Municipality
Research Foundation of St
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献