Do granular systems obey statistical mechanics? A review of recent work assessing the applicability of equilibrium theory to vibrationally excited granular media

Author:

Windows-Yule C. R. K.12

Affiliation:

1. Multi-Scale Mechanics Group, CTW and MESA+, University of Twente, P. O. Box 217, 7500 AE Enschede, Netherlands

2. The Netherlands School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract

Driven granular media — assemblies of discrete, macroscopic elements exposed to a source of mechanical energy — represent inherently out-of-equilibrium systems. Although granular media are ubiquitous in both nature and industry, due to their dissipative nature and resultant complex behaviors they remain startlingly poorly understood as compared to classical, thermodynamic systems. Nonetheless, in recent years it has been observed that the behaviors of granular media can, under certain circumstances, closely resemble those of equilibrium systems. One of the most important contemporary questions in the field of granular physics is whether these similarities are merely superficial, or whether the parallels run deep enough that the behaviors of these nonequilibrium systems can in fact be successfully captured using analogs to existing theoretical models developed for classical systems. In this review, we draw together the findings of a variety of recent studies where this question has been addressed, comparing and contrasting the results and conclusions presented. We focus our attention on vibrated and vibrofluidized granular beds, which provide a canonical system representative of various equilibrium and nonequilibrium physical systems, and whose simple dynamics offer a valuable testing ground for exploring the fundamental physics of the granular state.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precursor nuclei on the bottom of a vibrating container: The onset of granular self-assembly crystallization;Physica A: Statistical Mechanics and its Applications;2022-02

2. Cubatic structural transformation of the packing of granular cylinders;Soft Matter;2022

3. On regular and random two-dimensional packing of crosses;Granular Matter;2021-12-15

4. Positron Emission Particle Tracking of Granular Flows;Annual Review of Chemical and Biomolecular Engineering;2020-06-07

5. Bibliography;Segregation in Vibrated Granular Systems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3