THE ROLE OF SUSPENSION STRUCTURE IN THE DYNAMIC RESPONSE OF ELECTRORHEOLOGICAL SUSPENSIONS

Author:

PARTHASARATHY M.1,AHN K. H.1,BELONGIA B. M.1,KLINGENBERG D. J.1

Affiliation:

1. Department of Chemical Engineering and Rheology Research Center, University of Wisconsin, 1415 Johnson Drive, Madison, WI 53706, USA

Abstract

The dynamic response of electrorheological (ER) suspensions has received little attention relative to the effort devoted to the study of the steady shear response. We report on simulation and experimental investigations of the dynamic oscillatory response of ER suspensions, in particular focusing on the relationship between suspension structure and the rheological response. We consider the response of monodisperse and polydisperse suspensions under linear deformation, as well as the response in the nonlinear regime. Dimensional analysis of the equations of motion predict that the linear rheological response obeys a time-field strength superposition principle, which is confirmed by experiment. The response is found to exhibit a sharp dispersion that is only broadened slightly by polydispersity. Nonlinear deformation is found to significantly broaden the observed dispersion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3