MECHANICAL PROPERTIES OF AN ER FLUID IN TENSILE, COMPRESSION AND OSCILLATORY SQUEEZE TESTS

Author:

VIEIRA S. L.1,NAKANO M.1,OKE R.1,NAGATA T.1

Affiliation:

1. Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan

Abstract

In this work, the mechanical properties of an anhydrous electrorheological fluid made of carbonaceous particles dispersed in silicone oil were determined in tensile, compression and oscillatory squeeze tests. The mechanical tests were carried out on a Mechanical Testling Machine and the device developed for measuring the ER properties was composed of two parallel steel electrodes between which the ER fluid was placed. The mechanical properties were measured for different DC electric field strengths, velocity and initial gap between the electrodes, and the ERF was tested in two different ways: (a) the fluid was placed between the electrodes (configuration 1) and (b) the electrodes were immersed inside the ERF (configuration 2). The results showed that the ER fluid is more resistant to compression than to tensile, and that the shape of the tensile stress-strain curve and the tensile strength varies with the electric field strength and the initial gap between the electrodes. The compressive stress increased with the increase of the electric field strength and with the decrease of the gap size and upper electrode velocity. In oscillatory test, for both configurations 1 and 2, increasing the oscillation frequency f and the number of cycles N produced a decrease of the damping performance of the ER fluid. Besides this, the damping force of each cycle in oscillatory tests increased with N. The electric field also played an important role on the shape of the hysteresis loop (stress as a function of fluid strain) for both configurations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3