Affiliation:
1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
Abstract
The classification and quantification of correlations (classical and quantum) in composite quantum systems are of fundamental significance for quantum information processing. While the paradigm of separability versus entanglement has been intensively studied, the scenario of classicality versus quantumness, with focus on the quantum discord, has also attracted many recent interests. In this paper, pursuing further the latter scenario and exploiting the intrinsic structure of bipartite quantum states via local projective measurements, we introduce the notion of coherent dimension of correlations in terms of the Lüders measurements. The coherent dimension can alternatively be regarded as a generalization of the Schmidt number of a pure state. Furthermore, we propose some families of measures for correlations, which extend naturally both the quantum discord and the quantum mutual information (total correlations), and furthermore interpolate between them. These quantities reveal some hierarchial structures, and provide a more complete description, of both classical and quantum correlations in the quantum realm.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献