Numerical simulation for heat and mass transport analysis for magnetic-nanofluids flow through stretchable convergent/divergent channels

Author:

Hashim 1,Hafeez Muhammad2,Chu Yu Ming3ORCID

Affiliation:

1. Department of Pure & Applied Mathematics, University of Haripur, Haripur 22620, Pakistan

2. Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan

3. Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China

Abstract

This paper adopts a theoretical approach to explore the heat and mass transport features for MHD Jeffery–Hamel flow of viscous nanofluids through convergent/divergent channels with stretching or shrinking walls. Recently, this type of flows generated by nonparallel inclined plates with converging or diverging properties has been frequently utilized in various industrial and engineering processes, like, blood flow through arteries, different cavity flows and flow through canals. The current flow model is formulated mathematically in terms of partial differential equations (PDEs) in accordance with conservation laws under an assumption that the flow is symmetric and purely radial. In addition, heat and mass transport mechanisms are being modeled in the presence of Brownian motion and thermophoretic aspects using Buongiorno’s nanofluid model. The dimensionless variables are employed to get the non-dimensional forms of the governing PDEs. The built-in MATLAB routine bvpc4 is implemented to determine the numerical solutions for governing the nonlinear system of ordinary differential equations (ODEs). Numerical results are presented in the form of velocity, temperature and concentration plots to visualize the influence of active flow parameters. The simulated results revealed that the Reynold number has an opposite effect on dimensionless velocity profiles in the case of convergent and divergent channels. Besides, the temperature distributions enhance for higher values of Brownian motion parameter.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3