Affiliation:
1. Laboratoire Léon Brillouin (CEA-CNRS), CEA Saclay, 91191-Gif-sur-Yvette Cedex, France
2. Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete, Greece
Abstract
The complex amplitudes of the electronic wavefunctions on different sites are used as Kramers variables for describing Electron Transfer. The strong coupling of the electronic charge to the many nuclei, ions, dipoles, etc, of the environment, is modeled as a thermal bath better considered classically. After elimination of the bath variables, the electron dynamics is described by a discrete nonlinear Schrödinger equation with norm preserving dissipative terms and Langevin random noises (at finite temperature). The standard Marcus results are recovered far from the inversion point, where atomic thermal fluctuations adiabatically induce the electron transfer. Close to the inversion point, in the non-adiabatic regime, electron transfer may become ultrafast (and selective) at low temperature essentially because of the nonlinearities, when these are appropriately tuned. We demonstrate and illustrate numerically that a weak coupling of the donor site with an extra appropriately tuned (catalytic) site, can trigger an ultrafast electron transfer to the acceptor site at zero degree Kelvin, while in the absence of this catalytic site no transfer would occur at all (the new concept of Targeted Transfer initially developed for discrete breathers is applied to polarons in our theory). Among other applications, this theory should be relevant for describing the ultrafast electron transfer observed in the photosynthetic reaction centers of living cells.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献