A Nonlinear Dynamical Model for Ultrafast Catalytic Transfer of Electrons at Zero Temperature

Author:

Aubry S.1,Kopidakis G.2

Affiliation:

1. Laboratoire Léon Brillouin (CEA-CNRS), CEA Saclay, 91191-Gif-sur-Yvette Cedex, France

2. Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete, Greece

Abstract

The complex amplitudes of the electronic wavefunctions on different sites are used as Kramers variables for describing Electron Transfer. The strong coupling of the electronic charge to the many nuclei, ions, dipoles, etc, of the environment, is modeled as a thermal bath better considered classically. After elimination of the bath variables, the electron dynamics is described by a discrete nonlinear Schrödinger equation with norm preserving dissipative terms and Langevin random noises (at finite temperature). The standard Marcus results are recovered far from the inversion point, where atomic thermal fluctuations adiabatically induce the electron transfer. Close to the inversion point, in the non-adiabatic regime, electron transfer may become ultrafast (and selective) at low temperature essentially because of the nonlinearities, when these are appropriately tuned. We demonstrate and illustrate numerically that a weak coupling of the donor site with an extra appropriately tuned (catalytic) site, can trigger an ultrafast electron transfer to the acceptor site at zero degree Kelvin, while in the absence of this catalytic site no transfer would occur at all (the new concept of Targeted Transfer initially developed for discrete breathers is applied to polarons in our theory). Among other applications, this theory should be relevant for describing the ultrafast electron transfer observed in the photosynthetic reaction centers of living cells.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3