Affiliation:
1. National Technical University of Athens, Physics Department, Zografou Campus GR-157 73, Athens, Greece
2. University of Oxford, Department of (Theoretical) Physics, 1 Keble Road OX1 3NP, Oxford, U.K.
Abstract
Within the framework of a relativistic non-Abelian gauge theory approach to the physics of spin–charge separation in doped quantum antiferromagnetic planar systems, proposed recently by the authors, we are examining here the effects of constant external magnetic fields on excitations about the superconducting state in the model. The electrically-charged Dirac fermions (holons), describing excitations about specific points on the fermi surface, e.g. those corresponding to the nodes of a d-wave superconducting gap in high-T c cuprates, condense, resulting in the opening of a Kosterlitz–Thouless–like gap (KT) at such nodes. This leads, in general, to a second superconducting phase transition, which occurs at low temperatures[Formula: see text], in addition to the high-T c superconductivity [Formula: see text] due to the bulk of the fermi surface for holons in a (d-wave) spin–charge separated superconductor. In the presence of strong external magnetic fields at the surface regions of the planar superconductor, in the direction perpendicular to the superconducting planes, these KT gaps appear to be enhanced. Our preliminary analysis, based on analytic Schwinger–Dyson treatments, seems to indicate that for an even number of Dirac fermion species, required in our model as a result of gauging a particle–hole SU(2) symmetry, Parity or Time Reversal violation does not necessarily occurs. Based on these considerations, we argue that recent experimental findings, concerning thermal conductivity plateaux of quasiparticles in planar high-T c cuprates in strong external magnetic fields, may indicate the presence of such KT gaps, caused by charged Dirac-fermion excitations in these materials, as suggested in the above model.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献