Gauge-Theory Approach to Planar Doped Antiferromagnets and External Magnetic Fields

Author:

Farakos K.1,Mavromatos N. E.2

Affiliation:

1. National Technical University of Athens, Physics Department, Zografou Campus GR-157 73, Athens, Greece

2. University of Oxford, Department of (Theoretical) Physics, 1 Keble Road OX1 3NP, Oxford, U.K.

Abstract

Within the framework of a relativistic non-Abelian gauge theory approach to the physics of spin–charge separation in doped quantum antiferromagnetic planar systems, proposed recently by the authors, we are examining here the effects of constant external magnetic fields on excitations about the superconducting state in the model. The electrically-charged Dirac fermions (holons), describing excitations about specific points on the fermi surface, e.g. those corresponding to the nodes of a d-wave superconducting gap in high-T c cuprates, condense, resulting in the opening of a Kosterlitz–Thouless–like gap (KT) at such nodes. This leads, in general, to a second superconducting phase transition, which occurs at low temperatures[Formula: see text], in addition to the high-T c superconductivity [Formula: see text] due to the bulk of the fermi surface for holons in a (d-wave) spin–charge separated superconductor. In the presence of strong external magnetic fields at the surface regions of the planar superconductor, in the direction perpendicular to the superconducting planes, these KT gaps appear to be enhanced. Our preliminary analysis, based on analytic Schwinger–Dyson treatments, seems to indicate that for an even number of Dirac fermion species, required in our model as a result of gauging a particle–hole SU(2) symmetry, Parity or Time Reversal violation does not necessarily occurs. Based on these considerations, we argue that recent experimental findings, concerning thermal conductivity plateaux of quasiparticles in planar high-T c cuprates in strong external magnetic fields, may indicate the presence of such KT gaps, caused by charged Dirac-fermion excitations in these materials, as suggested in the above model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3