COMPRESSIVE MODULUS OF FERRITE CONTAINING POLYMER GELS

Author:

MITSUMATA TETSU1,FURUKAWA KENTA1,JULIAC ETIENNE2,IWAKURA KENJI1,KOYAMA KIYOHITO12

Affiliation:

1. Department of Polymer Science and Engineering, Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan

2. Venture Business Laboratory, Graduate School of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan

Abstract

The mechanical properties of magnetic gel have been investigated. Magnetic gels, which consist of finely dispersed powder of barium ferrite ( BaFe 12 O 19) and poly vinyl alcohol (PVA), have been synthesized. The diameter of barium ferrite is less than 45 μm. The magnetic gels varying with ferrite concentration, crosslinking densities were prepared by mixing 10 wt.% PVA aqueous solution and barium ferrite using glutaraldehyde as a crosslinking agent in the presence of HCl. The diameter of barium ferrite is large enough to have a permanent magnetic moment. We applied a 10 kOe magnetic field in order to saturate the magnetic moment of barium ferrite. After magnetization, the compressive modulus was estimated with an ultrasonic method in order to find the influence of magnetization. Ultrasonic measurements were carried out using burst waves at 10 MHz and 295.5 K. The modulus of magnetized gel was found to depend on the concentration of magnetic substance, the crosslinking density, and the degree of swelling. It was clear that the modulus of magnetized gel was higher than the gel without magnetization for all samples. The change in modulus to the initial modulus ΔM′/M′o for 10 wt.% and 15 wt.% of ferrite concentration was about 0.28% and 0.4% in a lower density region, respectively. Moreover, the change in modulus ΔM′/M′o was constant in a lower density region however it strongly depends on the density in a higher density region. When the stress direction is perpendicular to the magnetization, the change in modulus increased. On the contrary, the change in modulus decreased when the stress direction is parallel to the magnetization. As increasing the density, the distance between magnetic substances become short and therefore the magnetic interaction is more significant in a higher density region.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3