Enhancing link prediction by exploring community membership of nodes

Author:

Bai Shenshen1,Fang Shiyu1,Li Longjie1ORCID,Liu Rui1,Chen Xiaoyun1

Affiliation:

1. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, P. R. China

Abstract

With the proliferation of available network data, link prediction has become increasingly important and captured growing attention from various disciplines. To enhance the prediction accuracy by making full use of community structure information, this paper proposes a new link prediction model, namely CMS, in which different community memberships of nodes are investigated. In the opinion of CMS, different memberships can have different influence to link’s formation. To estimate the connection likelihood between two nodes, the CMS model weights the contribution of each shared neighbor according to the corresponding community membership. Three CMS-based methods are derived by introducing three forms of contribution that neighbors make. Extensive experiments on 12 networks are conducted to evaluate the performance of CMS-based methods. The results manifest that CMS-based methods are more effective and robust than baselines.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3