Surface flow modification of aerofoils for automotive racing car applications

Author:

Allarton Richard1,Yao Jun1,Clifford Tyler1,Hitchborn Benjamin1,Parker Liam J1,Shaw Joshua1

Affiliation:

1. School of Engineering, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK

Abstract

An aerofoil commonly used in aerospace engineering to produce lift is also employed in the motor sport industry to produce downforce for improving traction during cornering. This paper investigates aerofoil surface modification through ‘golf ball dimpling’, used to reduce flow separation behind a golf ball. The studies of other researchers have shown that this type of design can have a positive effect on improving aerofoil performance. However, no optimization information of dimple sizing is given in literature. Therefore, three types of dimpling sized at 5, 10 and 15 mm are applied to the surface of a NACA 6615 wing at 25% chord length from the leading edge in this study using Computational Fluid Dynamics (CFD) as an initial design process. Then a physical model, made through 3D printing additive manufacturing (AM), is tested at angles of attack (AoA) ranging from [Formula: see text] to [Formula: see text] and wind speed up to 30 m/s in a subsonic wind tunnel. Experimental and CFD results show that the smallest dimple size provides the most significant increase on lift to drag ratio at high AoA above [Formula: see text]. This ratio increases further with the wind speed, indicating that a high AoA wing favors down force to improve drag reduction performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3