Modeling on the temperature dependence of the magnetic susceptibility and electrical conductivity oscillations in narrow-gap semiconductors

Author:

Erkaboev U. I.1ORCID,Gulyamov G.2,Mirzaev J. I.1,Rakhimov R. G.1

Affiliation:

1. Namangan Institute of Engineering and Technology, 160115 Namangan, Uzbekistan

2. Namangan Engineering — Construction Institute, 160103 Namangan, Uzbekistan

Abstract

Electrical conductivity oscillations, magnetic susceptibility oscillations and electronic heat capacity oscillations for narrow-gap electronic semiconductors are considered at different temperatures. A theory is constructed of the temperature dependence of quantum oscillation phenomena in narrow-gap electronic semiconductors, taking into account the thermal smearing of Landau levels. Oscillations of longitudinal electrical conductivity in narrow-gap electronic semiconductors at various temperatures are studied. An integral expression is obtained for the longitudinal conductivity in narrow-gap electronic semiconductors, taking into account the diffuse broadening of the Landau levels. A formula is obtained for the dependence of the oscillations of longitudinal electrical conductivity on the bandgap of narrow-gap semiconductors. The theory is compared with the experimental results of [Formula: see text]. A theory is constructed of the temperature dependence of the magnetic susceptibility oscillations for narrow-gap electronic semiconductors. Using these oscillations of magnetic susceptibility, the cyclotron effective masses of electrons are determined. The calculation results are compared with experimental data. The proposed model explains the experimental results in [Formula: see text] at different temperatures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3