TOPOLOGICAL FLAT BAND MODELS AND FRACTIONAL CHERN INSULATORS

Author:

BERGHOLTZ EMIL J.1,LIU ZHAO2

Affiliation:

1. Dahlem Center for Complex Quantum Systems, Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

2. Beijing Computational Science Research Center, Beijing, 100084, P. R. China

Abstract

Topological insulators and their intriguing edge states can be understood in a single-particle picture and can as such be exhaustively classified. Interactions significantly complicate this picture and can lead to entirely new insulating phases, with an altogether much richer and less explored phenomenology. Most saliently, lattice generalizations of fractional quantum Hall states, dubbed fractional Chern insulators, have recently been predicted to be stabilized by interactions within nearly dispersionless bands with nonzero Chern number, C. Contrary to their continuum analogues, these states do not require an external magnetic field and may potentially persist even at room temperature, which make these systems very attractive for possible applications such as topological quantum computation. This review recapitulates the basics of tight-binding models hosting nearly flat bands with nontrivial topology, C≠0, and summarizes the present understanding of interactions and strongly correlated phases within these bands. Emphasis is made on microscopic models, highlighting the analogy with continuum Landau level physics, as well as qualitatively new, lattice specific, aspects including Berry curvature fluctuations, competing instabilities as well as novel collective states of matter emerging in bands with |C|>1. Possible experimental realizations, including oxide interfaces and cold atom implementations as well as generalizations to flat bands characterized by other topological invariants are also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 334 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3