Physics of the Extended Neuron

Author:

Bressloff P. C.1,Coombes S.1

Affiliation:

1. Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK

Abstract

We review recent work concerning the effects of dendritic structure on single neuron response and the dynamics of neural populations. We highlight a number of concepts and techniques from physics useful in studying the behaviour of the spatially extended neuron. First we show how the single neuron Green's function, which incorporates details concerning the geometry of the dendritic tree, can be determined using the theory of random walks. We then exploit the formal analogy between a neuron with dendritic structure and the tight-binding model of excitations on a disordered lattice to analyse various Dyson-like equations arising from the modelling of synaptic inputs and random synaptic background activity. Finally, we formulate the dynamics of interacting populations of spatially extended neurons in terms of a set of Volterra integro-differential equations whose kernels are the single neuron Green's functions. Linear stability analysis and bifurcation theory are then used to investigate two particular aspects of population dynamics (i) pattern formation in a strongly coupled network of analog neurons and (ii) phase-synchronization in a weakly coupled network of integrate-and-fire neurons.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Absolute Stability and Synchronization in Second-Order Neural Fields with Conduction Delays;SIAM Journal on Applied Dynamical Systems;2023-06-07

2. Amari Model;Encyclopedia of Computational Neuroscience;2022

3. Coherence Resonance in Random Erdös-Rényi Neural Networks: Mean-Field Theory;Frontiers in Applied Mathematics and Statistics;2021-07-15

4. Brain-wave equation incorporating axodendritic connectivity;Physical Review E;2020-02-18

5. Numerical investigation of a neural field model including dendritic processing;Journal of Computational Dynamics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3