On the negative capacitance behavior in the forward bias of Au/n–4H–SiC (MS) and comparison between MS and Au/TiO2/n–4H–SiC (MIS) type diodes both in dark and under 200 W illumination intensity

Author:

Çetinkaya H. G.1,Yıldız D. E.2,Altındal Ş.1

Affiliation:

1. Physics Department, Faculty of Sciences, Gazi University, Ankara, Turkey

2. Physics Department, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey

Abstract

In order to see the effect of interfacial layer on electrical characteristics both Au /n–4 H – SiC (MS) and Au/TiO 2/n–4 H – SiC (MIS) type Schottky barrier diodes (SBDs) were fabricated and their main electrical parameters were investigated by using the forward and reverse bias current-voltage (I–V), capacitance/conductance-voltage (C/G–V) measurements at room temperature. The ideality factor (n), series and shunt resistances (Rs, Rsh), barrier height (BH), depletion layer width (WD) and the concentration of donor atoms (ND) were obtained before and after illumination. The energy density distribution profile of surface states (Nss) was also obtained by taking into account voltage dependent effective BH (Φe) and ideality factor (nV). All of these experimental results confirmed that the use of a high dielectric material or insulator layer ( TiO 2) between metal and semiconductor leads to improvements in the diode performance in terms of Rs, Rsh, BH, Nss and rectifier rate (RR = IF/IR for sufficiently high forward and reverse current). Another important result is the negative capacitance (NC) behavior observed in the forward bias C–V plot for the Au /n–4 H – SiC (MS) diode, but it disappears in Au/TiO 2/n–4 H – SiC (MIS) diode and also the minimum value of C–V plot corresponds to maximum value of G/ω–V plot in the accumulation region. Such behavior of NC shows that the material displays an inductive behavior.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3