INFLUENCE OF PARTICLE SIZE ON THE DYNAMIC STRENGTH OF ELECTRORHEOLOGICAL FLUIDS

Author:

SHIH YUNG-HUI1,CONRAD HANS1

Affiliation:

1. Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7517, USA

Abstract

The electrical properties, rheology and structure of model ER fluids consisting of glass beads in silicone oil were investigated as a function of electric field E (0–4 kV/mm ), particle size D (6–100 µ m ) and shear rate [Formula: see text]. The conductivity of the suspensions was 3 orders of magnitude greater than that of the host oil at E ⋝ 1 kV/mm ; their low-voltage d.c. permittivity was about 1.35 times larger. The flow stress of the suspensions was given by [Formula: see text] where τE is the polarization component and τ vis the viscous component. The linear dependence of τE on E was attributed to dipole saturation. The observed opposing effects of D and [Formula: see text] on τE were concluded to result from their respective influence on the strength of the columnar structure normally produced by the electric field and its fragmentation during shear. The constant C1 was in agreement with the Einstein equation for the effect of volume fraction of particles on the viscosity of suspensions. The parameter C2/D was concluded to reflect either the effect of particle surface area on viscosity or a polydispersion effect. The present results did not correlate with the Mason number as normally formulated, but did when it was appropriately modified.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3