Mechanical properties and deformation behavior of a refractory multiprincipal element alloy under cycle loading

Author:

Peng Jing1,Li Fang1,Liu Bin2,Liu Yong2,Fang Qihong1,Li Jia1,Liaw Peter K.3

Affiliation:

1. College of Mechanical and Vehicle Engineering, Hunan, University, Changsha, Hunan 410082, P. R. China

2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China

3. Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA

Abstract

In comparison with the state-of-the-art Ni-based superalloys, refractory multiprincipal element alloys (MPEAs) exhibit considerably higher strengths at temperatures above 1600[Formula: see text]C, which can be a significant potential required in the high demand for aerospace applications. However, the atomic-scale work-hardening behavior of such important materials during low-cycle loading remain unknown. Here, using molecular dynamics simulations, we study the low-cycle fatigue of nanocrystalline refractory multiprincipal element alloy with different grain sizes, to reveal the cyclic deformation, work hardening and damage mechanism. As a result, an extensive grain growth is observed during the cyclic deformation, thus driving the dynamic Hall–Petch strengthening mechanism. For the model with large grain size, the glide of partial dislocations with screw structure can be responsible for the deformation behavior under cyclic loading, and at small grain size the grain growth-coordinated deformation twinning can control the plastic process. The deformation twin boundaries generated during the cyclic loading show high stability, while the remaining high-angle grain boundaries are highly unstable. The initial softening followed by hardening depends upon the dislocation density and grain size. In particular, atomic-scale element segregation occurs after cyclic loading. This study gives a cyclic deformation micromechanism, and thus accelerates the design and development of superior fatigue-resistant refractory multiprincipal element alloy over a wide temperature range.

Publisher

World Scientific Pub Co Pte Lt

Subject

Polymers and Plastics,Mechanics of Materials,Atomic and Molecular Physics, and Optics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3