Eshelbian mechanics of novel materials: Quasicrystals

Author:

Lazar Markus1,Agiasofitou Eleni1

Affiliation:

1. Heisenberg Research Group, Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt, Germany

Abstract

In this work, the so-called Eshelbian or configurational mechanics of quasicrystals is presented. Quasicrystals are considered as a prototype of novel materials. Material balance laws for quasicrystalline materials with dislocations are derived in the framework of generalized incompatible elasticity theory of quasicrystals. Translations, scaling transformations as well as rotations are examined; the latter presents particular interest due to the quasicrystalline structure. This derivation provides important quantities of the Eshelbian mechanics, as the Eshelby stress tensor, the scaling flux vector, the angular momentum tensor, the configurational forces (Peach–Koehler force, Cherepanov force, inhomogeneity force or Eshelby force), the configurational work, and the configurational vector moments for dislocations in quasicrystals. The corresponding [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-integrals for dislocation loops and straight dislocations in quasicrystals are derived and discussed. Moreover, the explicit formulas of the [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-integrals for parallel screw dislocations in one-dimensional hexagonal quasicrystals are obtained. Through this derivation, the physical interpretation of the [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-integrals for dislocations in quasicrystals is revealed and their connection to the Peach–Koehler force, the interaction energy and the rotational vector moment (torque) of dislocations in quasicrystals is established.

Publisher

World Scientific Pub Co Pte Lt

Subject

Polymers and Plastics,Mechanics of Materials,Atomic and Molecular Physics, and Optics,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3