Enhancing the sensitivity of mesoscopic light reflection statistics in weakly disordered media by interface reflections

Author:

Park Daniel J.12,Pradhan Prabhakar3,Backman Vadim1

Affiliation:

1. Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA

2. Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA

3. BioNanoPhotonics Lab, Department of Physics, College of Arts and Sciences, University of Memphis, Memphis, TN 38152, USA

Abstract

Reflection statistics have not been well studied for optical random media whose mean refractive indices do not match with the refractive indices of their surrounding media. Here, we theoretically study how this refractive index mismatch between a one-dimensional (1D) optical sample and its surrounding medium affects the reflection statistics in the weak disorder limit, when the fluctuation part of the refractive index [Formula: see text] is much smaller than the mismatch as well as the mean refractive index of the sample [Formula: see text]. In the theoretical derivation, we perform a detailed calculation that results in the analytical forms of the mean and standard deviation (STD) of the reflection coefficient in terms of disorder parameters [Formula: see text] and its correlation length [Formula: see text] in an index mismatched backscattering system. Particularly, the orders of disorder parameters in STD of the reflection coefficient for index mismatched systems are shown to be lower [Formula: see text] than that of the matched systems [Formula: see text]. By comparing STDs of the reflection coefficient values of index matched and mismatched systems, we show that reflection coefficient at the sample boundaries in index mismatched systems can enhance the signal of the STD to the “disorder parameters” of the reflection coefficient. In terms of biophotonics applications, this result can lead to potential techniques that effectively extract the sample disorder parameters by manipulating the index mismatched conditions. Potential applications of the technique for enhancement in sensitivity of cancer detection at the single cell level are also discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3