CHARACTERIZATION OF CHEMICALLY-DEPOSITED SILVER SULFIDE THIN FILMS

Author:

MOLLA M. Z.1,CHOWDHURY M. R. I.1,MUSTAFA G.1,HUSSAIN S.1,HOSSAIN K. S.1,RAHMAN S. N.2,KHATUN N.2,AHMED N. A.2,FARHAD S. F. U.2,MURATA K.3,TAMBO T.3,ISLAM A. B. M. O.1

Affiliation:

1. Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

2. Industrial Physics Division, BCSIR Laboratories Dhaka, Dhaka-1205, Bangladesh

3. Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Toyama, 3190 Gofuku, Toyama-930-8555, Japan

Abstract

Ag 2 S thin films have been deposited onto fluorinated tin oxide (FTO)-coated conducting glass substrates using chemical bath deposition (CBD) method. Photoelectrochemical (PEC) cell, optical properties, surface morphology, structural properties, compositional analysis and electrical properties of Ag 2 S thin films have been investigated. The PEC measurements indicate that the deposited Ag 2 S layers are n-type in electrical conduction. The transmittance of deposited layer is obtained to be about 13–87%. The absorbance of the films is found to decrease with increasing wavelength. The band gap of the Ag 2 S thin film is estimated to be 1.8 eV. It is observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements that the substrates are well-covered with the deposited Ag 2 S layers without cracks and pinholes. The grain size of Ag 2 S thin films is estimated from SEM measurements to be in the range 100–210 nm. The mean roughness of Ag 2 S films is found from AFM measurements to be in the range 7.20–15 nm. X-ray diffraction shows that the films are well-crystallized and the deposited layers are mainly consisting of Ag 2 S phase with (-103) preferential plane. EDX analysis shows that a nearly stoichiometric composition of Ag 2 S is obtained. The resistivity is estimated to be in the range 3.5–7.0 Ω-cm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3