Electronic, optical and thermal properties of TiCr2 and TiMn2 by ab initio simulations

Author:

Ali M. S.1,Roknuzzaman M.2,Parvin R.3,Islam A. K. M. A.4,Ostrikov K.5

Affiliation:

1. Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh

2. Department of Physics, Jessore University of Science and Technology, Jessore 7408, Bangladesh

3. Department of Physics, Rajshahi University, Rajshahi 6205, Bangladesh

4. International Islamic University Chittagong, 154/A College Road, Chittagong 4203, Bangladesh

5. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia

Abstract

A theoretical study of TiX2 (X = Cr, Mn) with C14 Laves phase compounds has been performed by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). The electronic properties (Fermi surface and charge density) have been calculated and analyzed. The optical characteristics (dielectric functions, absorption spectrum, conductivity, energy-loss spectrum and reflectivity) are calculated and discussed. The calculated large positive static dielectric constant indicates good dielectric properties. The reflectivity of TiX2 (X = Cr, Mn) is high in the IR–Visible–UV region up to [Formula: see text][Formula: see text]13 eV showing promise as a good solar heating barrier material. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats and thermal expansion coefficient are obtained for T = 1200 K and P = 50 GPa through quasi-harmonic Debye model with phononic effects. Fermi surface, optical and thermodynamic properties are very important for practical applications of the materials in optical and other devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3