Affiliation:
1. Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169, Japan
2. Dipartimento di Fisica, Università di Bari, via Amendola 173, and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
Abstract
The temporal behavior of quantum mechanical systems is reviewed. We mainly focus our attention on the time development of the so-called “survival” probability of those systems that are initially prepared in eigenstates of the unperturbed Hamiltonian, by assuming that the latter has a continuous spectrum. The exponential decay of the survival probability, familiar, for example, in radioactive decay phenomena, is representative of a purely probabilistic character of the system under consideration and is naturally expected to lead to a master equation. This behavior, however, can be found only at intermediate times, for deviations from it exist both at short and long times and can have significant consequences. After a short introduction to the long history of the research on the temporal behavior of such quantum mechanical systems, the short-time behavior and its controversial consequences when it is combined with von Neumann’s projection postulate in quantum measurement theory are critically overviewed from a dynamical point of view. We also discuss the so-called quantum Zeno effect from this standpoint. The behavior of the survival amplitude is then scrutinized by investigating the analytic properties of its Fourier and Laplace transforms. The analytic property that there is no singularity except a branch cut running along the real energy axis in the first Riemannian sheet is an important reflection of the time-reversal invariance of the dynamics governing the whole process. It is shown that the exponential behavior is due to the presence of a simple pole in the second Riemannian sheet, while the contribution of the branch point yields a power behavior for the amplitude. The exponential decay form is cancelled at short times and dominated at very long times by the branch-point contributions, which give a Gaussian behavior for the former and a power behavior for the latter. In order to realize the exponential law in quantum theory, it is essential to take into account a certain kind of macroscopic nature of the total system, since the exponential behavior is regarded as a manifestation of a complete loss of coherence of the quantum subsystem under consideration. In this respect, a few attempts at extracting the exponential decay form on the basis of quantum theory, aiming at the master equation, are briefly reviewed, including van Hove’s pioneering work and his well-known “λ2T” limit. In the attempt to further clarify the mechanism of the appearance of a purely probabilistic behavior without resort to any approximation, a solvable dynamical model is presented and extensively studied. The model describes an ultrarelativistic particle interacting with N two-level systems (called “spins”) and is shown to exhibit an exponential behavior at all times in the weak-coupling, macroscopic limit. Furthermore, it is shown that the model can even reproduce the short-time Gaussian behavior followed by the exponential law when an appropriate initial state is chosen. The analysis is exact and no approximation is involved. An interpretation for the change of the temporal behavior in quantum systems is drawn from the results obtained. Some implications for the quantum measurement problem are also discussed, in particular in connection with dissipation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
195 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献