Affiliation:
1. Central Department of Physics, Tribhuvan University, TU Road, Kirtipur 44618, Nepal
Abstract
The geometries, structural stability, electrical and magnetic characteristics of pure and multiple palladium (Pd)-adsorbed graphene, followed by hydrogen adsorption, are investigated using first-principles calculations with the density functional theory. In the DFT-D2 technique, first-principles computations with the van der Waals interaction are done using the generalized gradient approximation. In a [Formula: see text] supercell, the adsorption energy per Pd atom is found to be 1.20 eV in the optimal adsorption shape. The bandgap of 51 meV has opened in multiple Pd-decorated graphene, according to band calculations. This band’s opening is ascribed to a symmetry break. The binding energy for hydrogen adsorption in optimal double Pd-decorated graphene was determined to be in the range of (0.14–0.73) eV per hydrogen molecule, indicating that Pd-decorated graphene might be used as a hydrogen storage material.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics