PHASE EVOLUTION IN Fe–Mn–Si SHAPE MEMORY ALLOYS DUE TO FORGING SPEED

Author:

ESKIL MURAT1,KANCA ERDOGAN2

Affiliation:

1. Department of Physics, Aksaray University, Faculty of Science and Letters, 68000, Aksaray, Turkey

2. Department of Mechanical Engineering, Engineering Faculty, University of Mustafa Kemal, Iskenderun, Hatay, Turkey

Abstract

The objective of this investigation is to compare the crystallographic characteristics of two different compositions of Fe – Mn – Si alloys forged with the newly designed and constructed High Energy Rate Forming (HERF) hammer with conventional hydraulic and mechanical presses. The degree of martensite formation may depend on metal forming conditions. For both of the alloys, one of the specimens was investigated in as "prepared form", the other specimen was investigated after air cooling with homogenization treatment and three specimens were deformed in different velocities after homogenization treatments. The changes which occurred in the transformation parameters of two FeMnSi alloys with different compositions due to the effects of thermal and mechanical procedures have been studied by using X-ray diffraction. In the alloy specimens cooled to different conditions from the high-temperature γ phase region, γ→ε and γ→ε→α′ martensitic transformations were observed. The lattice parameters (LP) of fcc γ and hcp ε structures were determined, and changes in forging speed on the LPs were found.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dry Sliding Wear Behavior of Boron-Doped 205 Manganese Steels;Journal of Materials Engineering and Performance;2020-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3