Modified spin-wave theory applied to one-dimensional Heisenberg ferromagnet with the nearest-neighbor and next-nearest-neighbor exchange anisotropies

Author:

Liao Yun1,Chen Yuan1ORCID,Chen Ji Pei1,Li Wen An1

Affiliation:

1. Department of Physics, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, P. R. China

Abstract

The modified spin-wave theory is used to investigate the one-dimensional Heisenberg ferromagnet with the nearest-neighbor (NN) and next-nearest-neighbor (NNN) exchange anisotropies. The ground-state and low-temperature properties of the system are studied within the self-consistent method. It is found that the effect of the NN anisotropy on the thermodynamic quantities is stronger than that of the NNN anisotropy in the low-temperature region. The anisotropy dependence behaviors (such as the power, exponential and linear laws) are obtained for the position and the height of the maximum of the specific heat and its coefficient, as well as the susceptibility coefficient. The specific heat and its coefficient both display the low-temperature double maxima which are induced by the anisotropies and the NNN interaction. In the very low temperatures the specific heat and the susceptibility behave severally as T[Formula: see text] and T[Formula: see text] at the critical point J2/J1 = −0.25, where J1 and J2 are the NN and NNN interactions, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province (CN)

Scientific Research Project of Guangzhou Municipal Colleges and Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3