Numerical modeling and MHD stagnation point flow of ferrofluid (non-Newtonian) with Ohmic heating and viscous dissipation

Author:

Maqbool Rukiya1,Ijaz Khan M.2ORCID,Qayyum Sumaira1,Hayat T.1

Affiliation:

1. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2. Department of Mathematics, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan

Abstract

Ferroliquids are made out of exceptionally tiny nanoscale particles (usually diameter 10 nanometers or less) of hematite, magnetite or some other compound comprising iron and a liquid. This is small enough for thermal agitation to scatter them equally inside a transporter liquid, and for them to contribute to general magnetic response of the liquid. The composition of the typical ferroliquid is about 5% magnetic solids, 10% surfactant and 85% carrier by volume. There are frequent applications of ferrofluids in mechanical and industrial engineering. Ferrofluids have innovative characteristics and their impact in magnetic fields prompts many fascinating applications. Albeit magnetic liquids are already utilized in certain devices they have not yet been abused to any level. It is trusted that this research communication may investigate the analyst to think of considering new uses for this entrancing material. Therefore, modeling is developed for the ferrofluid stagnation flow over a stretched surface with Ohmic heating and dissipation. The Tiwari–Das model is used for mathematical modeling of nanofluid. The nonlinear system of differential equations is first converted into first order and then tackled through the built-in-Shooting method. The impact of the different pertinent flow parameters is discussed on the velocity, temperature, Nusselt number and skin friction coefficient through the various plots and tables.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3