A successive multi-phase transitions in polycrystalline BaFe2As2: Emergence of C4 phase

Author:

Oner Yildirhan1,Boyraz Cihat2

Affiliation:

1. Department of Physics Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

2. Department of Mechanical Engineering, Faculty of Technology, Marmara University, 34840 Maltepe, Istanbul, Turkey

Abstract

We report magnetization and resistivity studies on polycrystalline BaFe2As2 prepared by solid-state reaction, in the temperature range of 5–350 K, upto the field of 9 T. Low-field susceptibility exhibits multi-phase transitions with two new magnetic phase transitions beside the well-known transition at [Formula: see text] K from paramagnetic/antiferromagnetic-tetragonal/orthorhombic transitions. The phase at [Formula: see text] K is attributed to the phase transition from antiferromagnetic-orthorhombic (C2-phase) to antiferromagnetic-tetragonal phase (C4-phase), while the phase transition at higher temperatures remains unsolved. Making an analogy to the antiferromagnetic nanosized particles, we suggest that BaFe2As2 consists of smaller but similar nanosized clusters. We have analyzed the magnetization data using the modified Langevin function on the basis of thermally activated induced uncompensated spins (thermoinduced moments). The nanosized clustering in this compound is evidenced by the exchange bias and coercivity stemming from the exchange coupling interactions between weak ferromagnetic bulk magnetization in clusters and spin-glass-like phase interface layers surrounding the clusters. We also observe that annealing enhances the superconductivity, similar to the effect of pressure on the superconductivity. We find that an exponential term well describes the resistivity of this compound due to magnon-assisted interband electron–phonon scattering between the bands with [Formula: see text] and [Formula: see text] orbitals forming two-hole pockets around the zone center and one electron pocket around the zone corner. We have also obtained the Kadowaki–Woods ratio ([Formula: see text] cm (K mol/mJ)[Formula: see text] and the Sommerfeld–Wilson ratio ([Formula: see text]) for BaFe2As2, both ratios are much larger than those ([Formula: see text]/[Formula: see text] cm (K mol/mJ)2, [Formula: see text]) for Kondo lattice systems, indicating the existence of a weak ferromagnetic correlation between Fe moments. It appears that magnon-mediated pairing is responsible for superconductivity. Finally, we observe zero resistance at [Formula: see text] K in amorphous BaFe2As2, which gives a new insight into the superconductivity under very high pressure.

Funder

Management of Scientific Research Projects

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3