AN APPROACH TO DEFORMATION THEORY BASED ON THERMODYNAMIC PRINCIPLES

Author:

KOENEMANN FALK H.1

Affiliation:

1. Im Johannistal 19, D-52064 Aachen, Germany

Abstract

The Cauchy stress theory has been shown to be profoundly at variance with the principles of the theory of potentials. Thus, a new physical approach to deformation theory is presented, which is based on the balance of externally applied forces and material forces. The equation of state is generalized to apply to solids, and transformed into vector form. By taking the derivatives of an external potential and the material internal energy with respect to the coordinates, two vector fields are defined for the forces exerted by surrounding the system, subject to the boundary conditions, and vice versa, subject to the material properties. These vector fields are then merged into a third one that represents the properties of the loaded state. Through the work function, the force field is then directly transformed into the displacement field. The approach permits fully satisfactory prediction of all geometric and energetic properties of elastic and plastic simple shear. It predicts the existence of a bifurcation at the transition from reversible to irreversible behavior whose properties permit correct prediction of cracks in solids. It also offers a mechanism for the generation of sheath folds in plastic shear zones and for turbulence in viscous flow. Finally, an example is given on how to apply the new approach to deformation of a discrete sample as a function of loading configuration and sample shape.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference40 articles.

1. Elastizitätstheorie;Landau L. D.,1991

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cauchy's stress theory in a modern light;European Journal of Physics;2013-11-13

2. ON THE SYSTEMATICS OF ENERGETIC TERMS IN CONTINUUM MECHANICS, AND A NOTE ON GIBBS (1877);International Journal of Modern Physics B;2008-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3