SYNTHESIS OF DIAMOND FILMS ON MOLYBDENUM SUBSTRATE SURFACE BY COMBUSTION FLAME

Author:

TAKAHASHI MAMORU1,KAMIYA OSAMU1,OHYOSHI TADASHI1

Affiliation:

1. Department of Mechanical Engineering, Akita University, 1-1 Tegatagakuen-machi, Akita, 010-8502, Japan

Abstract

Diamond films were synthesized on a Mo substrate using combustion flame. During the cooling process, most diamond films delaminated. From previous work it was shown that diamond films delaminated at a synthesis temperature less than 1300K (low temperature), and films did not delaminate at synthesis temperature more than 1400K (high temperature). In this study, to clarify the influences on the delamination of the interface, films synthesized at high temperature and low temperature were investigated by SEM and X-ray diffraction. The results show that in the case of low temperature, diamond films were synthesized on the Mo substrate, case of high temperature, Mo 2 C and diamond phases were synthesized on the Mo substrate. Thermally induced interfacial stress occurs due to the thermal expansion mismatch between the synthesized film and the Mo substrate. The interfacial stress by high temperature and low temperature was determined as the cause of the delamination. Thus, the interfacial stress of each synthesized temperature was calculated by a finite element method. The results show that the interfacial stress in the film synthesized by high temperature was smaller than that by the low temperature. As the buffer phases prevent the delamination, synthesized films by high temperature will be useful as hardcoating layer for a metal surface.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3