A COMPUTER MODEL OF THE FERROELECTRIC PROPERTIES OF MICROTUBULES
-
Published:2004-01-20
Issue:02
Volume:18
Page:253-274
-
ISSN:0217-9792
-
Container-title:International Journal of Modern Physics B
-
language:en
-
Short-container-title:Int. J. Mod. Phys. B
Affiliation:
1. School of Software Engineering and Data Communications (Info Tech), Queensland University of Technology, GPO Box 2434, Brisbane, Queensland, Australia 4001, Australia
Abstract
The tubulin dimers of microtubules are arranged in a crystalline lattice which is wrapped to form a long cylinder. Two different arrangements of monomers within the lattice have been postulated: the A-lattice and the B-lattice. Previous studies have assumed that both lattice types are hexagonal with each dimer surrounded by six nearest-neighbors. Based on recent biochemical studies I argue that both lattice types can also be formed with each dimer having four nearest-neighbors. This has important consequences for the overall behavior of the model. It is generally assumed that tubulin dimers possess a mobile electric dipole which can exist in one of two discrete Ising spin states: -1 (down) or +1 (up). The average of all these states within a microtubule is the mean polarization and is a measure of the dipole ordering within the lattice. Microtubule models with six nearest-neighbors behave like models of ferroelectric substances: at low temperatures the lattice is highly ordered with most (if not all) dipoles pointing in the same direction, but as the temperature increases, the degree of ordering decreases due to random thermal flipping of the dipoles. The mean polarization is particularly erratic at physiological temperatures. In contrast, when the microtubule lattice is modeled with four nearest-neighbors, the mean lattice polarization is quite stable and remains close to zero over a wide temperature range that includes 37°C (310K). This raises new questions about the biophysical role of microtubules.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献