Hydrogen production using aluminum-based materials prepared by mechanical milling

Author:

Guan X.1,Luo P.1,Dong S. J.1

Affiliation:

1. School of Materials and Chemistry Engineering, Hubei University of Technology, No. 1 Lijiadun Road, Hongshan, Wuhan, Hubei 430068, P. R. China

Abstract

Aluminum (Al)-based materials composited of different low melting point materials were prepared by mechanical ball-milling. Hydrogen production using these materials was investigated to help resolving the safety issues associated with the storage and transportation of hydrogen. The phase composition and microstructure of the Al-based composited materials were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. As observed in this study, the addition of low melting point metals (such as Sn, Bi and In) helped to lower the initial Al-water reaction temperature and to increase the yield in the production of hydrogen. Samples of optimized compositions, Al–6% Sn–4% Bi and Al–6% Sn–4% In, were found to exhibit high hydrogen production yields of up to 448 and 515 mL, respectively. Meanwhile, their hydrogen generation rates were increased.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3