Affiliation:
1. Division of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
Abstract
The halide-activated pack cementation method was utilized to deposit aluminide or silicide coatings on Inconel 617 and Hastelloy X superalloys. Aluminide and silicide diffusion coatings were formed at 850[Formula: see text]C for 2 h in nitrogen atmosphere, using a pack mixture containing pure aluminum (Al) or silicon (Si) and aluminum oxide (Al2O3) powders with activators of NH4Cl and AlF3. Aluminide-coated alloys showed homogeneous and uniform microstructures. Al diffused into the alloy inwards and aluminide diffusion coatings of [Formula: see text]17 [Formula: see text]m thick were formed inside the alloy. It was shown that the Al coatings played a key role in blocking off the excessive corrosion products at a high temperature for the alloys. The enhanced thermal stability and improved wear resistance were achieved in the aluminide coatings. In contrast to the aluminide coating, the silicide coating played a negative role, unable to provide the protective layer. The microstructural evolution and thermal stability of the aluminide- and silicide-coated alloys have been elucidated.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献