First-principles study of Ni-adsorption on non-metal atom-doped MoSe2

Author:

Su Dan1,Liu Guili1ORCID,Wei Ran1,Ma Mengting1,Yang Zhonghua1,Zhang Guoying2

Affiliation:

1. College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, P. R. China

2. School of Physics, Shenyang Normal University, Shenyang, P. R. China

Abstract

In this paper, the effect of C, N and O atom doping of intrinsic MoSe2 on the adsorption capacity of Ni is investigated based on first-principle research methods. The aim is to analyze whether intrinsic MoSe2 can be doped and modified to improve its adsorption capacity of Ni so that it can be used as a new type of adsorbent material. By calculating and analyzing the energy band structure, density of states, differential charge and optical properties of each system, the conclusions are as follows: the O-doped MoSe2 system has the best adsorption capacity for Ni, and the adsorption capacities of the three systems are in the following order: O>N>C. The bandgap value of intrinsic MoSe2 adsorbed Ni-atom decreases, while the Fermi energy level of the C-doped MoSe2 adsorbed Ni-atom system is located in the valence band, which shows p-type doping. The differential charge of the system was analyzed and the charge transfer of the adsorbed system was increased by C, N and O atom doping, and the O-doped system had the strongest adsorption capacity for Ni. It was shown that the charge distribution between the system and the adsorbed Ni-atom changed considerably after atomic doping, and the bonds between the Ni-atom and the dopant atoms of the C-, N- and O-doped adsorption system were strongly ionic. Optical analysis reveals that C, N and O atom doping improves the charge binding ability of Ni-adsorbed MoSe2 material, which gives it a higher polarization rate and faster electric field response. The absorption of ultraviolet light is greatly enhanced, which can improve the efficiency of solar cells and convert solar energy into electricity more effectively. Overall, the Ni adsorption capacity of atomically doped MoSe2 is improved, indicating that doping can be an effective means to improve the adsorption of Ni-atom by intrinsic MoSe2. It is hoped that the research results in this paper can provide some theoretical guidance for the application of MoSe2 in optoelectronic devices.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3