Effect of annealing temperature on structural and magnetic properties of strontium hexaferrite nanoparticles synthesized by sol–gel auto-combustion method

Author:

Roohani Ebrahim1,Arabi Hadi2,Sarhaddi Reza1,Sudkhah Saeedeh1,Shabani Ameneh1

Affiliation:

1. Magnetism and Superconducting Research Laboratory, Department of Physics, University of Birjand, Iran

2. Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this paper, strontium hexaferrite nanoparticles were synthesized by the sol–gel auto-combustion method. Effect of annealing temperature on crystal structure, morphology and magnetic properties of nanoparticles was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Also, the thermal decomposition of as-synthesized powdered samples has been studied by thermogravimetric analysis (TGA). The XRD patterns confirmed the formation of single phase M-type hexagonal crystal structure for powders annealed above 950[Formula: see text]C, whereas the presence of hematite ([Formula: see text]-Fe2O3) as secondary phase was also observed for sample annealed at 900[Formula: see text]C. Furthermore, the crystallinity along with the crystallite size were augmented with annealing temperature. Comparison of the FT-IR spectra of the samples before and after annealing treatment showed the existence of metal–oxygen stretching modes after annealing. The thermogravimetric analysis confirmed the thermal decomposition of as-burnt powders happened in three-stage degradation process. The TEM images showed the nanoparticles like hexagonal-shaped platelets as the size of nanoparticles increases by increasing the annealing temperature. With increasing annealing temperature, the magnetic saturation and the coercivity were increased to the maximum value of 74.26 emu/g and 5.67 kOe for sample annealed at 1000[Formula: see text]C and then decreased.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3